
NPS-CS-03-004

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Policy Enforced Remote Login

by

Thuy D. Nguyen
Timothy E. Levin

Febraary 2003

Approved for public release; distribution is unlimited.

Prepared for: the Center for INFOSEC Studies and Research

20030401 061

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM Admiral David R. Ellison
Superintendent

R. Elster
Provost

This report was prepared for and ftinded by the Naval Postgraduate School Center for
Information Systems Security (INFOSEC) Studies and Research (NPS CISR).

This report was prepared by:

Thuy 0. Nguyen
Research Associate

r
Timothy E. umm
Research Associate Professor

Reviewed by:

Neil C. Rowe
Professor
Department of Computer Science

Peter J, Denning, Chair
Department of Computer Science

Released by:

D. W. Neteer
Associate Provost and
Dean of Research

REPORT DOCUMENTATION PAGE
Fonn approved

OMB No 0704-0188

JeBetson Davis Hi^way, Suile 1204, Ariington, VA 22202-4302, and to the OBic* of Management and Budget, Paperwork Rednction Project (0704-0188), Washington, DC
20S03.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

February 14, 2003
3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE
Policy Enforced Remote Login

6. AUTHOR(S)

Thuy D. Nguyen, Timothy E. Levin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Center for Information Systems Security Studies and Research (NFS QSR)
Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943

5. FUNDING

8. PERFORMING ORGANIZATION
REPORT NUMBER

Nre-CS-03-004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 wor&.)

This document describes enhancements made to the popular OpenSSH authentication service to restrict the execution of OpenSSH processes by
applying a ring-based program execution policy. We also apply a label-based mandatory access control (MAC) policy to limit a user's login shell
to run at a specific security level within the user's authorized security clearance range. While still rudimentary, these enhancements illustrate the
usefuUness of a ring-based execution mechanism for restricting program behavior.

14. SUBJECT TERMS

Computer security, trusted path, software ring, execution domain

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

NSN 7540-01-280-58(W

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

Standard Form 29

IS. NUMBER OF
PAGES

7
U. PRICE CODE

M. LIRMTATIONOF
ABSTRACT
Unclassified

8 (Rev. 2-^9)
described by ANSI Std 239-18

Policy Enforced Remote Login

Thuy D. Nguyen, Timothy E. Levin

Center for Information Systems Security Studies and Research

Computer Science Department

Naval Postgraduate School

Monterey, California 93943

Abstract:

This document describes enhancements made to the popular OpenSSH
authentication service to restrict the execution of OpenSSH processes by applying a
ring-based program execution policy. We also apply a label-based mandatory
access control (MAC) policy to limit a user's login shell to run at a specific
security level within the user's authorized security clearance range. While still
rudimentary, these enhancements illustrate the usefulness of a ring-based execution
mechanism for restricting program behavior.

Introduction
This document describes the enhancements made to the popular OpenSSH implementation
to provide a policy-enforced remote user authentication service. OpenSSH is a client-
server application that provides a range of remote authentication and other security
services. On the server side, OpenSSH uses the privilege separation approach to prevent
privilege escalation by containing privileged and unprivileged operations in separate
processes. The Policy-Enforced Remote Login (PERLI) service extends the OpenSSH
privilege separation mechanism by applying a ring-based program execution control policy
to further restrict the execution domains of the OpenSSH processes. PERLI also applies a
label-based mandatory access control (MAC) policy to limit a user's login shell to run at a
specific security level within the user's authorized security clearance range.

The PERLI extension was added to OpenSSH 3.5. It runs on a modified version of
OpenBSD 3.1 that supports MAC enforcement and Ring protection described in [5], [2]
and [3]. The OpenSSH implementation of privilege separation is described in [1]. PERLI
was developed specifically to illustrate domain separation capabilities in support of the
Homeland Security Research and Technology program of the Department of Justice.

I Policy Enforced Remote Login

Background
The Secure Shell (SSH) protocol suite was designed to provide secure remote login and
other secure network services over an unprotected network. OpenSSH is a free, open
source implementation of the SSH protocol suite. The SSH client program (ssh) allows a
user to login and execute commands on a remote server over encrypted channels. The SSH
daemon (sshd) authenticates the user and, if the authentication is successful, spawns a child
process to execute the requested login shell or commands. The SSH daemon is usually
started by the init program and runs with superuser privileges. Without privilege
separation, the SSH daemon's child process will also run with the same set of special
privileges which can be abused to compromise the integrity of the system. With privilege
separation, the child process will only run with the privileges for which the current user is
authorized.
Privilege separation is achieved by splitting a process into two parts: a privileged parent
and an unprivileged child. The parent process monitors the progress of the child process
and performs privileged operations for the child process. The child process performs
networking functions and user requests. Figure 1, borrowed from [1], illustrates the process
architecture of the privilege-separated OpenSSH.

privileged
OpenSSH

Listen »:22

privileged
OpenSSH

Monitor

privileged
OpenSSH

Mortiior

Network conneaion

forl< unprivileged thikJ

ReC|ue$t Auth

Auth Result

Request PTY
■4

Pass PTY

unprivileged
OpenSSH

Netwoffc
Processing

user privileged
OpenSSH

User Request
Processiirtq

Key Exchange

Authentication

User Netv/ork Data

Figure 1

After a TCP connection is established between the client and the server, the SSH Listener
forks a privilege Monitor process which, in turns, forks an unprivileged child process to
handle user authentication requests. Because the user is not yet authenticated, the
unprivileged child process at this stage runs as a special "sshd" user with no J^gin^and file
creation capability. The pre-authentication child process is ephemeral. The Monitor

I Policy Enforced Remote Login

process retains superuser privileges throughout its lifetime in order to perform privileged
operations. After the user is authenticated, the Monitor process forks another unprivileged
child process to execute the requested functions. The post-authentication child process
runs with the privileges assigned to the authenticated user.
The privilege-separated OpenSSH architecture is a natural candidate to demonstrate that
MAC enforcement and Ring protection can make application-level security mechanisms
more secure. On operating systems that support MAC and/or Ring policies, the SSH
daemon needs to spawn the post-authentication child process at the appropriate security
level and execution domain that are within the user's security clearance. With these
protections in place, even if the SSH modules or the program that they invoke became
corrupted, the damage they can cause will be limited to the level and domain to which they
are assigned.
The SSH protocol defines an authentication method called "keyboard-interactive". It is a
relatively new authentication method for SSH and is defined in [4]. The IETF draft
describes it as follows:

"This method is suitable for interactive authentication methods which do not need any special

software support on the client side, instead ail authentication data should be entered via the

keyboard. The major goal of this method Is to allow the SSH client to have little or no

knowledge of the specifics of the underlying authentication mechanism(s) used by the SSH

server."

This method is suitable for PERL! since PERLI requires the user to specify a password and
a session level interactively. Furthermore, OpenSSH already uses this method to
implement challenge-response and one-time p^sword authentication mechanisms.

Concept of Operations

PERLI provides MLS-aware remote login functionality. In a distributed security
architecture such as [5], it can be used as an enhanced trusted path mechanism to ensure
that the user is interacting directly with the security control mechanism of the operating
system, and to subsequently provide authentication, session-level negotiation, and other
security interactions. In this scenario, lesser-privileged users who have no access to high
assurance hardware authentication devices can use the COTS SSH client software on their
desktops, laptops, even PDA's to remotely log onto the PERLI-enabled server to access
information that is available at the authenticated session level.
PERLI can also be used to demonstrate the concept of emergency response domain
separation. In an emergency network mode, network activities of less privileged domains
are temporarily halted. After the emergency situation is resolved, less-critical functions are
gradually enabled to bring the system back to a normal,state. Logic in the security
management function will determine whether PERLI is to be enabled or disabled while a
system is in this transitional mode. If enabled, PERLI will run in a designated execution
domain and only users who are authorized to execute programs in that domain can use
PERLI to log onto the system. Once authenticated by PERLI, the user can use the
encrypted channels provided by the SSH transport protocol to perform the network
functions required to manage and restore the system.

I Policy Enforced Remote Login

Implementation
The current PERU implementation only affects the SSH server code. No code changes are
required on the client side. Code modifications were made in two stages. The mitial
development was done on a modified version of OpenBSD 3.1 in which root is exempt
from all MAC checks. This version does not support the Ring policy as descnbed m [3].
The reason for using this version is to gain familiarity with the OpenSSH source code and
usage.
The second development phase was done on a separate modified version of OpenBSD 3.1
in which the Ring policy is introduced and all users (including root) are subject to MAC
and Ring enforcements. This prototype system supports four execution rings, ranging from
0 to 3. The association between rings and execution domains is as follows:

Unprivileged Application Domain Ring 3

Privileged Application Domain Ring 2

Admin Domain Ring 1

OS Domain RingO

Similar to the privilege separation approach, application programs on a ring-enforced
system are separated into two execution domains to provide finer control of program
integrity and protection of critical application data. Programs assigned to a lesser
privileged ring (e.g.. Ring 3) will be unable to execute or access objects allocated in a more
privileged ring (e.g. Ring 2). Within this paradigm, the ring allocation of the PERU
processes is as follows:

Post-authentication Child Ring 3

Pre-authenticatlon Child Ring 3

Monitor Ring 2

Listener Ring 2

I Policy Enforced Remote Login

The following modifications were made to the server code.
1. New module to handle PERLI-specific authentication functions. These include

invoking the underlying keyboard-interactive handler to prompt the user for the
password and desired session level, authenticating the user password, and verifying
that the specified session level is within the user's clearance obtained from the
system's clearance database. By default, PERLI only allows remote users
(including root) to login and run a single level session. This restriction can be lifted
for the root user by enabling a special server configuration option that allows root to
login with a range. If no session level is given, the user's default session level is
used.

2. Modification to pre-authentication processing. Additional logic was added to ttie
Monitor process to change its execution domain to Ring 2, and to set the security
level and execution domain of the pre-authentication child process to the default
session level of the special "sshd" user and Ring 3, respectively.

3. Modification to post-authentication processing. The Monitor process was also
changed to set the security level and execution domain of the post-authentication
child process to the requested session level and Ring 3, respectively.

In the original OpenSSH implementation, privilege separation ends after the pre-
authentication phase if the remote user is root. With respect to user privileges, it is
redundant for the Monitor process to fork a post-authentication child process that will end
up having the same privileges as the Monitor itself But with respect to security levels, a
system may be required to restrict root to run with a lesser security level if root logs in
remotely. Hence, the original logic was modified so that the post-authentication child
process will be created for all users.
PERLI is configured at both compile time and runtime. At compile time, the "PERLI"
compiler toggle must be set and the default "BSD_AUTH" toggle must be unset. The
required runtime configuration options are described below. Furthermore, PERLI has only
been tested wifli SSH protocol version 2.

User Interface and Configuration

The following options must be set in the various configuration files in order to use PERLI.
Options with asterisk (*) are newly added for PERLI. Items with double asterisks (**) are
existing options with newly added values.

1. SSH client configuration file (/etc/ssh/ssh_config)
• PreferredAuthentications=keyboard-interactive

2. SSH server configuration file (/etc/ssh/sshd_config)
• UsePriviiegeSeparation=yes

• PERLIAuthentication=yes*
• PermitRootLogin=perli-with-range**
This option should only be used if root is allowed to login remotely with a range.

3. Clearance database (/security/bibClearance, /security/blpClearance,
/security/rinClearance)

I Policy Enforced Remote Login

These files must be configured to specify the security clearance of the users who are
authorized to login remotely as well as the security clearance of the special "sshd"
user. The "sshd" user is added to the system's user database as part of the
OpenSSH installation procedure.

Testing With SSH Clients

PERLI was tested with the following open source client programs:
1. PuTTY, a Windows SSH client program, running on a Windows 2000 laptop;
2. OpenSSH client program running on a Red Hat Linux desktop;
3. OpenSSH client program running on a Compaq iPAQ 3600 handheld computer.

Figure 2 is a screenshot of a PERLI session using PuTTY.

i92i.i6a.o^« - PunY

login 83: toot
PERLI F'a33W0td:
Mctce level (iou)
Read level (high)

: Sl0:ill5 icO id lc-2 ic3:3 3
: 310:ills IcO icl lc2 lc3:3 3
an 24 14:15:12 2003 from 192.IE
FICl #0: Wed Jan 15 09:27:56 r£

llelcome to OpenBSD: The proactively secure UiiiK-llk» operating syscein.

Please use the 3endlDug(l) utility to report bugs in the system.
Before reporting a bug, please try to reproduce it uith the latest
version of the code. Uith bug reports, please try to ensure that
enough information to reproduce the problem is enclosed, and if a
UnoMn fix for it exists. Include that as iiell.

USER=root
LOGNAHE=root
HOHE=/root
PATH=/u3r/bin:/bin:/usr/3bin:/3bin:
HAIL-/var/mail/root

sr/local/bin

ij3H_CLIENT=l92.168.0.26 1031 22
SSH_COMIECTI0N=ig:.160.0.26 1031 192.163.0.20 22
S3H_TTY=/dev/ttypl
TERII=xterm

debug3: channel_cl03e_fd3: channel 0: r -1 u -1 e -1
Terminal type? [xterm]
Don't login as coot, use su
spacely# label
slO : 1115 icO Icl ic2 lc3 : 3 3
spacely^ [1

liiilll 11(3 yi 'ii&JS»' ■;;■■:■:'::.: ■■:..,. '| J j^iM^sM;!^ fS^^SfliT'l^fM"

Figure 2

Policy Enforced Remote Login

Summary

The current PERLI implementation, while rudimentary, illustrates the usefulness of a
software-based ring execution policy for restricting program execution. Lots of work is
still required to make PERLI more robust and compatible with existing authentication
methods that OpenSSH supports. Future work includes audit enhancements, applying
MAC and Ring enforcements to the port tunneling capabilities that OpenSSH also provides,
and investigating how OpenSSH with PERLI extension can be used in a distributed MLS
architecture, such as [5].

References

[1] Niels Provos, Preventing Privilege Escalation, Cm Technical Report 02-2, August 5,2002.

[2] Paul C. Clark. Policy-Enhanced Linux, 23"* National Information Systems Security
Conference, October 16-19,2000.

[3] Paul C. Clark, et al. Execution Policies Research and Implementation, NPS Technical Report
NPS-CS-03-003, Febraaiy, 2003.

[4] Frank Cusack, Martin Forssen. Generic Message Exchange Authentication For SSH, Internet
Draft, <draft-ietf-secsh-auth-kbdinteract-04.txt>, October 2,2002.

[5] Cynthia E. Irvine, David J. Shifflett, Paul C. Clark, Timothy E. Levin, George W. Dinolt,
MYSEA Security Architecture, NPS Technical Report NPS-CS-02-^06, May 2002

INITIAL DISTRIBUTION LIST

1. Defeiwe Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 013
Naval Postgraduate School
Monterey, CA 93943-5100

3. Research Office, Code 09
Naval Postgraduate School
Monterey, CA 93943-5138

4. Dr. Cynthia E, Irvine
Code CS/Ic
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

5. Mr. Timothy E. Levin
Code CS/TL
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

6. Thuy D. Nguyen
Code CS/Nt
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

